

Im2Pano3D: Extrapolating 360° Structure and Semantics Beyond the Field of View

Shuran Song^I

Output: Semantic-Structure View Extrapolation

In this paper, we explore the task of semantic-structure view extrapolation. Given a partial observation of the room in the form of an RGB-D image, the goal for this task is to predict both 3D structure and semantics for a full panoramic view of the same scene.

Key Idea

Indoor environments are often **highly structured**. By learning over the statistics of many typical scenes, the model should be able to leverage strong contextual cues inside the image to predict what is beyond the field of view.

Prior Work: Color Only

Hard to be used directly to support high level planning.

Learning to Look Around [Jayaraman and Grauman]

Image Inpainting

[Pathak et. al]

model pn2pn+A d2d+A pns2pns+S pns2pns+A pns2pns+A+S

type _____ human _____ avg all avg type rgbpn2pns rgbpn2pns rgbpn2pns

mode

Angel X. Chang¹ Princeton University¹

Data Representation

Andy Zeng¹

Whole room panorama representation: We use a sky-box-like multichannel panorama to represent 3D scenes. The views are circularly connected, hence, observing the inner two views is equivalent to observing the outer two views of its shifted panorama.

ax + bx + cy - p = 0

Surface normal n (a,b,c)

Training Data

58,866 panoramas

Real Houses (Matterport3D): 5,315 panoramas

sistency between normal and plane distance predictions.

Evaluation

nodels	semantics								3D su	rface (r	n)		normals (degree)					
ype+loss	PoG↑	exist 1	size 1	emd↓	loU↑	acc.↑	incept.∣	mean 🛛	med.↓	0.2(%)	0.5(%)	1 (%) 1	mean∣	med.↓	11.25(%)	22.5(%)	30 (%) ↑	
on2pn+A	_	-	-	-	_	-	-	0.320	0.119	67.6	81.4	91	38.5	5.5	70.3	74.5	76	
l2d+A	_	-	-	-	-	-	-	0.353	0.148	63.1	79.6	90.1	59.0	41.2	12.7	29.3	38.9	
ons2pns+S	0.379	0.613	0.653	1.184	0.313	0.728	0.375	0.416	0.227	51.8	74.3	88.9	32.5	7.6	62.3	72.2	76.0	
ons2pns+A	0.370	0.681	0.750	1.269	0.318	0.719	0.452	0.343	0.15	63.3	80.4	90.9	37.7	4.4	72.2	76.0	77.4	
ons2pns+A+S	0.382	0.710	0.754	1.204	0.330	0.716	0.463	0.339	0.151	64.0	80.8	91	36.9	4.6	73.0	76.4	77.8	

Ablation studies on SUNCG (Named by: input2output)

ls train PoG i exist i	sema size i emd 1.474 0.943	ntics IoU1 0.203	acc. ↑ 0.522	incept.	mean	3D su med.↓	rface (r 0.2(%)	n) 0.5(%)	1(%) │	mean↓	no med.↓	ormals (de 11.25(%)	egree) 22.5(%)	30 (%) ↑
train PoG i exist i	size 1 emd	↓ IoU↑ 0.203	acc. 1 0.522	incept.	mean	med.↓	0.2(%)	0.5(%)	1(%) │	mean↓	med.↓	11.25(%)	22.5(%)	30 (%) ↑
	1.474 0.943	0.203	0.522	_	0.001									
- 0.303 0.650					0.661	0.449	29.1	57.7	78.7	49.9	17.4	51.2	58.2	60.8
m 0.131 0.228	1.574 2.007	0.098	0.498	-	0.925	0.685	12.6	37.8	67.9	46.2	41.8	3.1	17.5	31.4
m 0.155 0.260	1.265 2.089	0.107	0.508	-	0.905	0.668	13.8	39.6	69.6	45.8	40.4	4.5	20.7	34.0
m 0.126 0.531	1.901 2.820	0.078	0.302	-	1.286	0.898	15.8	33.6	56.4	65.1	58.1	23.8	31.2	34.9
s+m 0.145 0.488	1.407 1.984	0.082	0.347	0.183	0.867	0.591	19.3	46.3	72.3	59.5	50.4	23.3	32.8	37.9
s s 0.185 0.56	1.589 1.729	0.129	0.378	0.233	0.609	0.365	32.3	63.4	82.5	47.2	20.8	43.6	54.7	59.4
5 m 0.245 0.542	0.933 1.535	0.174	0.566	0.394	0.603	0.361	37.4	63.7	82.1	39.1	22.4	34.9	52.6	60.4
s s+m 0.275 0.616	0.936 1.487	0.208	0.566	0.402	0.524	0.280	43.6	69.5	85.5	43.6	19.0	42.9	57.2	62.8

Comparing to baseline methods on Matterport3D.

s: semantic d: depth p: plane distance n: normal. A: adversarial loss, S: scene attribute loss.

Baselines: avg: average distribution nn: nearest neighbor impaint: [Pathak et al]

Training set: m: matterport3d s: suncg s+m: both

Silvio Savarese² Manolis Savva¹ Stanford University²

----(A) Depth encoding (B) Plane equation encoding (C) Plane fitting on (B)

3D structure representation: We propose to represent the 3D surface using its plane equation, which decomposes the 3D surface into its surface normal Plane distance (a,b,c) and plane distance to the origin (p). Top to origin (p) shows predictions with different encodings.

Im2Pano3D Network

Experiments

Accuracy v.s. FOV

For different input camera configurations, Im2Pano3D provides a unified framework to efficiently fill in missing 3D structure and semantics of the unobserved scene. The observation coverage is shown in parentheses. The data for [RGB-D+motion] comes from NYUv2.

Thomas Funkhouser¹

Input Camera Configuration

Example Results

😑 ceiling 🔵 wall 🔵 floor 🥚 window 🔵 bed 💮 door 🔵 cabinet 🔵 chair 🛑 sofa 💮 tv 🛑 table 🔵 object 🔵 furniture Left shows probability distribution of semantics. Right shows semantic labels with the highest predicted class probability for each pixel, and reconstructed 3D point clouds.

Human Completion

First column shows the input observations. Columns 2 to 5 are completion results from different users overlaid on the observations. Sixth column shows ground truth and our prediction.

Code & Data

im2pano3d.cs.princeton.edu