
Im2Pano3D: 
Extrapolating 360  Structure and Semantics Beyond the Field of View

Shuran Song, Andy Zeng, Angel X. Chang, Manolis Savva,  Silvio Savarese, and Thomas FunkhouserShuran Song, Andy Zeng, Angel X. Chang, Manolis Savva,  Silvio Savarese, and Thomas Funkhouser

Im2Pano3D: 
Extrapolating 360  Structure and Semantics Beyond the Field of View



Boundary Extension
Intraub and Richardson, 1989





20- 30 % More





“False memory 1/20th of a second later: what the early onset of boundary extension reveals about perception.” Intraub and Dickinson



Infer the context beyond observation

“False memory 1/20th of a second later: what the early onset of boundary extension reveals about perception.” Intraub and Dickinson

This ability is critical for us in order to:

‣ build a persistent understanding of the world 

‣ support spatial reasoning

‣ perform tasks e.g. navigation, next-best-view planning

limited by FoV



Can we enable machines to do the same?



View Extrapolation 
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What the machine sees

though its camera

Complete surrounding environment 



Image Inpainting 
[Pathak et. al]

User-guided view extrapolation [Zhang et al.]

Prior work: Predicting Scene Appearance (Only Colored Pixels)
Learning to Look Around

[Jayaraman and Grauman]
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SUN360 scene observation completion examples
GT viewgrid t = 1 t = 2 t = 3 t = 4

Figure 3. Best viewed on pdf with zoom. Episodes of active observation completion for a scene (top) and object (bottom).Column 1 shows the ground
truth viewgrid with a red square around the random starting view. Columns 2-5 show our method’s viewgrid completions for t = 1, . . . , 4 with red
squares around selected views. As the model’s beliefs evolve, the space of possibilities grows more constrained, and the shape of the ground truth
viewgrid begins to emerge. Row 1: The system correctly estimates a flat outdoor scene at t = 1, inferring the position of a horizon and even the sun from
just one view of a gradient in the sky. At t = 2, it sees rocks and sand, and updates the viewgrid to begin resembling a beach. It then continues to focus
on the most interesting (and unpredictable) region of the scene containing the rocks and shrubs. Row 2: The first view is overhead, and azimuthally
aligned with one of the sides of an unseen category object (chair). Our agent chooses to move as far from this view as possible at t = 2, instantly forming
a much more chair-like predicted viewgrid, which continues to improve afterwards.

Table 1. Per-pixel mean squared error (MSE⇥1000) with episode length set to training length T (6 on SUN360, 4 on ModelNet), and
corresponding improvement over 1-view baseline. Lower error and higher improvement is better. RGB (luminance) values in color
(gray) images are normalized to [0,1], so error values are on scale of 0 to 1000.

Dataset! SUN360 ModelNet (seen classes) ModelNet (unseen classes)

Method# — Metric! MSE(x1000) Improvement MSE(x1000) Improvement MSE(x1000) Improvement

1-view 39.40 - 3.83 - 7.38 -
random 31.88 19.09% 3.46 9.66% 6.22 15.72%
large-action 30.76 21.93% 3.44 10.18% 6.16 16.53%
peek-saliency [23] 27.00 31.47% 3.47 9.40% 6.35 13.96%
ours 23.16 41.22% 3.25 15.14% 5.65 23.44%

peek-saliency tests if salient views are informa-
tive for observation completion. Note that this baseline
“peeks” at neighboring views prior to action selection
to measure saliency, giving it an unfair and impossible
advantage over ours and the other baselines.

These baselines all use the same network architecture as
ours, differing only in the exploration policy which we
seek to evaluate.

4.2. Active observation completion results

Tab 1 shows the scene and object completion mean-
squared error on SUN360 and ModelNet (seen and unseen
classes). For these results, episode lengths are held con-
stant to T timesteps (6 on SUN360, 4 on ModelNet), same
as during training. While all the multi-view methods im-
prove over 1-view, our method outperforms all baselines
by large margins. To isolate the impact of view selec-
tion, we report improvement over 1-view for all methods.
Compared to random, ours consistently yields approxi-
mately 2x improvement; our gains over large-action
are also substantial in all cases, meaning that simply look-
ing at well-spaced views is not enough. Both outcomes
highlight the major value in learning to intelligently look

around. Improvements are larger on more difficult datasets,
where errors are larger (SUN360 > ModelNet unseen >
ModelNet seen). This is as expected, since additional views
are most critical where one view produces very poor re-
sults. On SUN360, peek-saliency, which has un-
fair access to neighboring views for action selection, is the
strongest baseline, but still falls short of ours. On Mod-
elNet data, peek-saliency performs poorly, likely be-
cause saliency fails to differentiate well between the syn-
thetic CAD model views; what is informative about an ob-
ject’s shape is much more complex than what low-level un-
supervised saliency can measure. Importantly, our advan-
tages hold even for unseen categories (rightmost), empha-
sizing the task-independence of our look-around policies.

Does our approach simply exploit its knowledge of cam-
era elevation to sample useful elevations more than others?
For instance, perhaps views from a horizontal camera posi-
tion (elevation 0°) are more informative than others. Upon
investigation, we find that this is not the case in practice.
In particular, our learned policy samples all elevations uni-
formly on both SUN360 and ModelNet data. Hence, the
ability to sense gravity alone offers no advantage over the
random baseline.

Stitching images from the Internet. [Qi et al.]

Hard to be used directly to support high level planning

View Extrapolation 



View Extrapolation 

Input: RGB-D images Bed
Bed

nightstand

door

chair

ceilingceiling

floor
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Output1: 3D Structures

Output2: Semantics



Where can I move?

Where should I turn to find a door?  

Output1: 3D Structures

Bed
Bed

nightstand

door

chair

ceilingceiling

floor

Output2: Semantics
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View Extrapolation 



Semantic-Structure View Extrapolation 
Input: RGB-D images
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Semantic-Structure View Extrapolation 

Output: 360° panorama  
with 3D structure & semantics

Wall

Window

Bed

Nightstand

Input: RGB-D images
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Output: 360° panorama  
with 3D structure & semantics

Bed

Nightstand

Behind camera

Semantic-Structure View Extrapolation 
Input: RGB-D images
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Wall

Window



Key idea
Key idea:  Indoor environments are often highly structured.  
By learning over the statistics of many typical scenes, the model should be 
able to leverage strong contextual cues inside the image to predict what 
is beyond the FoV.
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Data of indoor 
environments

Im2Pano3D
Network

3D Structure 
+ Semantic



Data of indoor 
environments

Im2Pano3D
Network

3D Structure 
+ Semantic

• How to obtain a large of amount training data?

Challenges

• How to provide meaningful supervision for training?

• How to represent the 3D structure?
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Challenge 1: How to obtain the data?

We need a dataset that has: 

Introduction Training Data 3D Representation Training Objective Experiments Conclusion

‣Semantic label.

‣Whole room context.

‣Many examples.

‣3D structure information.



Real-Word Houses (Matterport3D): 
5,315 RGB-D panoramas 

Fine-tune and test

Synthetic Houses (SUNCG):
58,866 RGB-D panoramas 

Pre-train  

3D Houses Datasets
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Challenge 1: How to obtain the data?



3D Scene

Introduction Training Data 3D Representation Training Objective Experiments Conclusion

Challenge 1: How to obtain the data?

Whole Room Sky-box Panorama
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Whole Room Sky-box Panorama

Challenge 1: How to obtain the data?



3D Structure
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Color Images Semantics

Challenge 1: How to obtain the data?



Color Images Semantics
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Color = R,G,B Semantics = ClassId
3D Structure

??

Challenge 1: How to obtain the data?

Standard Data Representation



Color Images Semantics

Hard to predict.
‣Viewpoint dependent. 
‣Large value variance 
even for nearby pixels 
on the same 3D plane

Depth? Normal? 
Easier to predict.
‣Solving back depth 
from normal is under 
constrained.
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Color = R,G,B Semantic = ClassId
3D Structure

??

Challenge 1: How to obtain the data?



color images semantic maps
Color = R,G,B Semantic = ClassId

Challenge 2: How to represent the 3D structure?

3D Structure
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Challenge 1: How to obtain the data?



color images semantic maps

normal (a,b,c)

3D Structure
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Plane Equation: 
ax + by + cz - p = 0 

Challenge2: 3D Structure Representation

plane distance (p)



color images semantic maps

normal (a,b,c) plane distance (p)

✓Pixels on the same planar 
surface share the same 
plane equation

3D Structure

Challenge2: 3D Structure Representation
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Plane Equation: 
ax + by + cz - p = 0 

✓Representation is piecewise 
constant

✓More robust



Raw Depth 
Representation

Plane 
Representation

Observation

Prediction
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Challenge2: 3D Structure Representation
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Challenge 3: What training objectives should we use?
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color

semantics

plane distance

normal

semantics

plane distance

normal

Im2Pano3D Network
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Challenge 3: Training Objectives
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Challenge 3: Training Objectives

rgb

p
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G: generator

softmax

L1

cosine

Every Pixel is 
Correct
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Challenge 3: Training Objectives

rgb

p
n

s
s’

p’

n’

G: generator

Prediction is 
Plausible 

D: discriminator
Real Rooms Adversarial loss 

Goodfellow et al. 2014

Real or Fake
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Challenge 3: Training Objectives
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Challenge 3: Training Objectives

rgb

p
n
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G: generator

Every Pixel is 
Correct

Prediction is 
Plausible 
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Similar Scene 
Attribute



Evaluation
Every pixel is 

correct
Prediction is 

plausible 
Similar scene 

attribute

3D Structure

Semantic 
Prediction

Pixel-wise
L2 distance

Pixel-wise
IoU

Earth Mover 
Distance

Probability 
over Groundtruth

Inception score
(Scene classification)
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Higher is 
better

Lower is 
better
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Evaluation

Two Steps (Image Inpainting)

(b) Im2Pano3D

(c) Image inpainting (d) Semantic and structure predictions on (c)

(a) Input (b) Im2Pano3D

(c) Image inpainting (d) Semantic and structure predictions on (c)

(a) Input

Input (b) Im2Pano3D

(c) Image inpainting (d) Semantic and structure predictions on (c)

(a) Input (b) Im2Pano3D

(c) Image inpainting (d) Semantic and structure predictions on (c)

(a) Input Ours

Nearest Neighbor 
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Example Results
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Observation
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Predicted Probability Distribution

Ceiling: Red indicates high probability
Introduction Training Data 3D Representation Training Objective Experiments Conclusion



Predicted Probability Distribution

Introduction Training Data 3D Representation Training Objective Experiments Conclusion

Floor: Red indicates high probability



Predicted Probability Distribution
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Wall: Red indicates high probability



Predicted Probability Distribution
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Bed: Red indicates high probability



Semantic Prediction

Semantic labels with highest probability per pixel

window
wall

ceiling

bed

ceiling
picture

floor

chair
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ceiling wall floor bedwindow objectdoor cabinet chair furnituresofa tv table

Results
Prediction

Bed

Object

Window

Ground truth
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Prediction

Bed

Object

Window

Ground truth
Results

ceiling wall floor bedwindow objectdoor cabinet chair furnituresofa tv table
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Prediction

Bed

Object

Window

Ground truth
Results

ceiling wall floor bedwindow objectdoor cabinet chair furnituresofa tv table
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How do we compare to people?
Observation Completion by different users
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ceiling wall floor bedwindow objectdoor cabinet chair furnituresofa tv table
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Geometric priors 3D plane equation representation
Contextual priors Two large-scale house level datasets

Meaningful supervision Multi-level loss functions

New Task: Semantic-Structure View Extrapolation

Im2Pano3D

Code & Data: im2pano3d.cs.princeton.edu

Conclusion

http://im2pano3d.cs.princeton.edu
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