

Im2Pano3D:

Extrapolating 360° Structure and Semantics Beyond the Field of View Shuran Song, Andy Zeng, Angel X. Chang, Manolis Savva, Silvio Savarese, and Thomas Funkhouser

Boundary Extension

Intraub and Richardson, 1989

20- 30 % More

"False memory 1/20th of a second later: what the early onset of boundary extension reveals about perception." Intraub and Dickinson

- This ability is critical for us in order to:
 - build a persistent understanding of the world
 - support spatial reasoning

"False memory 1/20th of a second later: what the early onset of boundary extension reveals about perception." Intraub and Dickinson

Can we enable machines to do the same?

Complete surrounding environment

Introduction

Training Data

3D Representati

n Training Objective

Input: RGB-D images

Introduction

Training Data

3D Representation Training Objective

Output1: 3D Structures

Output2: Semantics

Experiments

Where can I move?

Where should I turn to find a door?

Introduction

Training Data

3D Representation Training Objective

Output1: 3D Structures

Output2: Semantics

Experiments

Semantic-Structure View Extrapolation

Input: RGB-D images

Introduction

Training Data

3D Representation Training Objective

Experiments

Semantic-Structure View Extrapolation

Input: RGB-D images

Nightstand-

Bed

Output: 360° panorama with 3D structure & semantics

Introduction

Fraining Data

3D Representati

n Training Objective

Experiments

Semantic-Structure View Extrapolation

Input: RGB-D images

Nightstand

Bed

Output: 360° panorama with 3D structure & semantics

Introduction

Fraining Data

3D Representati

Behind camera

n Training Objective

Experiments

Key idea

Key idea: Indoor environments are often **highly structured**. By learning over the statistics of many typical scenes, the model should be able to leverage **strong contextual cues** inside the image to predict what is beyond the FoV.

Data of indoor environments

Introduction

Fraining Data

3D Representati

n Training Objective

Challenges

- How to obtain a large of amount training data?
- How to represent the 3D structure?
- How to provide meaningful supervision for training?

Introduction

Training Data

3D Representati

on Training Objective

We need a dataset that has:

Semantic label.

- SD structure information.
- Whole room context.

Training Data

Many examples.

3D Houses Datasets

Synthetic Houses (SUNCG):

58,866 RGB-D panoramas Pre-train

Training Data

Real-Word Houses (Matterport3D): 5,315 RGB-D panoramas Fine-tune and test

3D Scene

Introduction

Training Data

3D Representati

Whole Room Sky-box Panorama

n Training Objective

Introduction

Training Data

3D Representati

Whole Room Sky-box Panorama

n Training Objective

Color Images

Semantics

Introduction

Training Data

3D Representation Training Objective

3D Structure

Color Images Color = R,G,B**Standard Data Representation**

3D Representation

Semantics **Semantics = ClassId**

3D Structure ??

Color Images Color = R,G,B

Depth?

Hard to predict.

- •Viewpoint dependent.
- Large value variance even for nearby pixels on the same 3D plane

3D Representation

Semantics Semantic = ClassId

3D Structure

??

Normal?

Easier to predict. Solving back depth from normal is under constrained.

color images Color = R,G,B

semantic maps Semantic = ClassId

Challenge 2: How to represent the 3D structure?

Introduction

Training Data

3D Representation

3D Structure

on Training Objective

Challenge2: 3D Structure Representation

normal (a,b,c)

3D Representation

3D Structure

plane distance (p)

Challenge2: 3D Structure Representation

normal (a,b,c)

plane distance (p)

3D Representation

3D Structure

 \checkmark Pixels on the same planar surface share the same plane equation

✓ Representation is piecewise constant

✓ More robust

Challenge2: 3D Structure Representation

Raw Depth Representation

Prediction

Observation

Training Objective **3D** Representation

Plane Representation

Im2Pano3D Network

Challenge 3: What training objectives should we use?

Training Objective

Challenge 3: Training Objectives

Introduction

Training Data

3D Representation Training Objectives

Experiments

Introduction

Training Data

3D Representation Training Objectives

Challenge 3: Training Objectives

Experiments

Challenge 3: Training Objectives

Training Data

Training Objectives

Prediction is Plausible

Challenge 3: Training Objectives

Every Pixel is Correct

 L_{recon}

Training Objectives

Similar Scene Attribute

Prediction is Plausible

Lattribute

 L_{adv}

$L = \lambda_1 L_{recon} + \lambda_2 L_{attribute} + \lambda_3 L_{adv}$

Every pixel is correct

Semantic Prediction **Pixel-wise** loU

3D Structure

Pixel-wise L2 distance

Training Data

Evaluation

Similar scene attribute

Prediction is plausible

Probability over Groundtruth

Inception score (Scene classification)

Earth Mover Distance

Evaluation

Introduction

Training Data

3D Representati

Higher is better

Lower is better

n Training Objective

Evaluation

Example Results

Introductior

Fraining Data

3D Representation Training Objective

Experiments

Observation

Introduction

Training Data

3D Representati

on Training Objective

Ceiling: Red indicates high probability

Introduction

Training Data

3D Representati

Training Objective

Floor: Red indicates high probability

Introduction

Training Data

3D Representati

Training Objective

Wall: Red indicates high probability

Introduction

Training Data

3D Representati

Training Objective

Bed: Red indicates high probability

Introduction

Training Data

3D Representati

Training Objective

Semantic Prediction

Semantic labels with highest probability per pixel

Introduction

Training Data

3D Representati

Training Objective

Results

Results

Results

Results

Results

How do we compare to people?

Observation

Completion by different users

How do we compare to people?

Pixel distance to observation

How do we compare to people?

Baselines

Conclusion

New Task: Semantic-Structure View Extrapolation

Contextual priors Geometric priors Meaningful supervision

Code & Data: im2pano3d.cs.princeton.edu

Introduction

Training Data

3D Representation Training Objectives

- Two large-scale house level datasets
- 3D plane equation representation
- Multi-level loss functions

Im2Pano3D:

Extrapolating 360° Structure and Semantics Beyond the Field of View Shuran Song, Andy Zeng, Angel X. Chang, Manolis Savva, Silvio Savarese, and Thomas Funkhouser

